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The exam is scheduled to last 75 minutes.

Open books and open notes. You may refer to your homework assignments and the
homework solution sets.

Calculators are allowed.

You may use any standalone computer system, i.e. one that is not connected to a network.
Please disable all wireless connections on your calculator(s) and computer system(s).
Please turn off all cell phones.

No headphones are allowed.

All work should be performed on the midterm exam. If more space is needed, then use
the backs of the pages.

Fully justify your answers. If you decide to quote text from a source, please give the
quote, page number and source citation.

Problem | Point Value | Your score Topic
1 18 Discrete-Time Convolution
2 18 Continuous-Time Convolution
3 18 Discrete-Time First-Order System
4 24 Discrete-Time Second-Order System
5 22 Potpourri
Total 100




Problem 2.1 Discrete-Time Convolution. 18 points.

(a) Plot y[n] = h[n] * x[n] using the rectangular pulse signals below. 9 points.
! HW 4.1; Handout E

hln] x[n] Slides 7-3 to 7-9; 7-13; 8-8 |
| SPFirst Sec. 5.2, 5-3 & 5-7 |
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Convolution formula:

©

y[n]= E h[m] x[n—m]=h[0]x{n]+h[1]x[n-1]= x[n]+ x[n-1]

m=-o

Convolving two causal signals gives a causal result.
Convolving two finite-length signals of lengths L, and L, gives a result of length L, + L,— 1.

y[n] Convolving two rectangular pulses of
different lengths gives a trapezoid.
2 h=[01100];
. x=[01110]:
T y = conv(h, x);
e | P n=[2-10123456];
10 1 2 3 4 stem(n, y):

(b) Plot y[n] = h[n] * u[n] using the signals below, where A[n] is a rectangular pulse and u[n] is the
unit step signal. 9 points.

h[n] ulr]
1 T {
—e o—o— 5 e T T T ot .
-1 0 1 2 3 - 0 1 b 3
Convolution formula:
e 3 Al OO M- a5
Convoin\;:lg two causal signals gives a causal result. | SPFirst Sec. 5:2,5:3 & 9.7 |
yin]
2
1 eoo
—e I n
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Problem 2.2 Continuous-Time Convolution. 18 points.

(a) Plot y(¢) = h(¢) * x(¢) using the rectangular pulse signals below. 9 points.

h(t) x(1)

Convolution formula: h(t)*x(t)Ef_o;x(r)h(t—r)dr

Convolving two causal signals gives a causal result.
Convolving two finite-length signals of lengths L, and L, gives a result of length L, + L,.

B LG () hit-r)  x(o  [X@ o
1
T T T
1 0 1 2 3 4 T o 1 2 3 4 1 0 1t_22 3t4
t-2 t t-2 t
For0<t<2: ftldr=t For2<t=<3: f:_zldr=2 For2<t=<3:
0
P 1dr=3-(t-2)=5-1
, | v I

..............................

Convolving two rectangular pulses of |  Siides 13-7 to 13-11
t different lengths gives a trapezoid. i Handout E. |
-1 0 1 2 3 4 5 e ’

(b) Plot y(¢) = h(?) * u(¢) using the signals below, where A() is a rectangular pulse and u(¢) is the unit
step signal. 9 points

h(t) u(t)

Very similar to problem 2.1(b) except
that the origin is handled differently
t when convolving two causal sequences.

................................................
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......................................



Problem 2.3. Discrete-Time First-Order LTI IIR System. 18 points.

Consider a causal discrete-time first-order linear time-invariant (LTI) system with input x[z] and
output y[n] governed by the following input-output relationship

yln]—ayln-1]=x[n] - b x[n-1]
for real-valued constants a and » where |a| <1 and |b| = 1.

(a) Draw the block diagram for the input-output relationship in the discrete-time domain. 3 points.
x[n] s
T >+ + 1 ) HW 6.2(d) |

7 i i Slide 11-7

x[n-1] ! y[n-%(jl)) | SPFirst Sec. 8-3.2 |
et | Slides 8-4 & 8-6 |

(b) What are the initial conditions? What should their values be? Why? 3 points. ' aes 5
i SPFirst Sec. 8-2 |

Let n=0: y[0] = a y|-1] + x[0] — b x[-1]. Initial conditions are x[-1] and ‘- st ec 02 |

y[-1]. System needs to be “at rest” for linearity and time-invariance to hold; hence, initial
conditions must be 0.

(c) Derive the transfer function in the z-domain. 3 points. HW 6.1 |
Take z-transform of both sides of the difference equation  Sldell6 |
ylnl - a yln-1] = x[n] - b x[n-1]
Y@)-az' Y@ =X() - b7 X@) L SPrstSee 531

Y@)(1-az)=X@) 1A-bz")

_ Y@ _ 1-bz~1
H(Z) T X(z) 1-az'1

(d) Give a formula for the frequency response. 3 points. i HW6.1

In the transfer function H(z), the pole is at z = a so the region of convergence is |z| > |a|.
Since |a| <1, the region of convergence includes the unit circle, and the substitution z = e/
is valid to convert the z-transform into a discrete-time Fourier transform.

i 1-be j® R R R LR LR L bt :
H(e®) = 1-aejo ;

(e) Give values of a and b to notch out a frequency of 0 rad/sample and pass
other frequencies as much as possible. Justify your choices. 6 points.

To remove 0 rad/sample, place a zero at z = e/ = 1. So,b=1. Im(2)
Place pole at same angle with radius of 0.9, so a = 0.9.
freqz( [1 -1], [1 - /-\ 0.9] );

0a 02 03 04 05 06 07
Normaiized Frequency (x rad/sample)

Magnitude (dB)

08 09 1



Problem 2.4 Discrete-Time Second-Order LTI System. 24 points.

The transfer function in the z-domain for a causal discrete-time second-order linear time-invariant
(LTI) system is given below where @, is a constant in units of rad/sample:

(sindd,) 2

H(z)=
@) 1-2(cos@,) 2™ +2~

(a) How many zeros are in the transfer function and what are their values? 3 points.

_ (sin@g)z~1 _ (sinbgdz T
H(z) = 1-2(cos @)z~ 1+z-2  2z2-2(cos dg)z+1 :___‘?_ll_t_l_e_s””_é’ 11-9 & 11-10
The root of the numerator is z = 0. Hence, there is one zero at z = 0. { SPFirst Sec. 8-4 |

_________________________

(b) How many poles are in the transfer function and what are their values? 3 points.

The denominator has two roots (poles). Using the quadratic formula,

..............................

2(cos @) +/2 cos? og—4 . - . S— | Slides 11-9 & 11-10 !
(03 o) . 2202 = cos@g ++/c0sZ Dy — 1 = cOs D £ /—sinZ Dy -

Hence, the poles are at cos @, * j sin @,.

(c) What is the region of convergence? 3 points. | Slides 11-5, 11-6 & 11-9
Part of the complex z plane outside a circle whose radius is the ------ SPFirst Secgg3
radius of the largest pole; that is, |z| > max {|po|, |p«|}- T

(d) Derive the ‘differen'ce equation that relates input x[n] and output y[#] in the discrete- HW63

time domain. 6 points.
Y(2) byz71 § Slide 11-9

H(z) = _ d _
X(z) 1-az1+z?2 | SPFirstSec. 89 |

By multiplying both sides by X(z) and alsoby 1 — a,z"1 + z72,
Y(2)(1-az7 '+ 27%) = byz71X(2)
Y(2) —a.z7'Y(2) + 27%2Y(2) = b1z71X(2)

By taking the inverse z-transform of both sides
y[n] —a;y[n—1] +y[n - 2] = byx[n — 1]
y[n] = 2(cos @y)y[n — 1] — y[n — 2] + (sin @y)x[n — 1]

(e) What are the initial conditions? To what values should the initial conditions be set? 3 points.

Let n=0: y[0] = a;y[—1] — y[-2] + byx[—1]. Initial conditions are  Slides 84 & 8-6 |
y[—1], y[—2], x[—1]. They should be set to zero to ensure the system bessssssessessessessssssiey
is “at rest” in order for the system to be linear and time-invariant. i SPFirst Sec. 8-2 1

(f) Using the input-output relationship in part (d) and the initial conditions in part

(e), compute the first three values of the impulse response for n = 0 to infer its formula. Hint: The

impulse response is causal and periodic. 6 points. S ,
To compute the impulse response, set x[n] = d[n]. L Slide 11-3 "
y[0] = 2(cos @o)y[—1] — y[-2] + (sin @)x[-1] = 0 | SPFirst Sec. 8-2 |
y[1] = 2(cos @()y[0] — y[—1] + (sin ®()x[0] = sin &,
y[2] = 2(cos @) y[1] — y[0] + (sin @) x[1] = 2(cos @) (sin @y) = sin 2@,
Inferring the formula for the impulse response: h[n] = (sin ®yn)u[n]



Problem 2.5. Potpourri. 22 points.

(a) Determine whether or not a tapped delay line is bounded-input bounded-output stability.
I. Discrete-time tapped delay line, a.k.a. finite
impulse response filter. 6 points.

x[n]
Bounded-input bounded-output (BIBO) )
stability means that for every possible

input signal that is bounded in amplitude,
output is always bounded in amplitude.

The impulse response is a,,.

Answer #1: Let | x[n] | = B; < %, then
ly[nll = [Z¥56 axxln — K|

M-1 M-1 M-1 yinl= E a, X[n-kl

k=0
yinll < ) lagxln— Kl = ) lallxin— k| < B; ) la| < B, <o
k=0 k=0 k=0
Answer #2: Yes. Impulse response is absolutely summable: YV 1la,| < B3 < o

Answer #3: Lecture slide 11-12 says that all discrete-time FIR filters are BIBO stable.

II. Continuous-time tapped delay line. 6 points.

Answer #1: Similar to answer #1 above. x(f )
Let | x(¢) | = B; < %, then

ly(®)] = |Zi50 arx(t — kT)| < ZE50 apx(t —

kT)|

M-1 M-1
= > layllx(t - k)| < By ) lay| < B,
k=0 k=0

< o
Answer #2: Yes, impulse response is absolutely integrable.

- - M-1
f |h(D)|dt = f z a,8(t — kt)
- ~®lk=0

a<y
k=0

f a, 8(t — kt)dt

k=0
< z lag|
k=0

M-1 M-1 (1) = E_ a, x(t—kT)

See SPFirst Sec. 9-8.3 (page 274) and Midterm #1 Spring 2009 Problem 1.3(c). SPFirst Sec. 9-8.3

(b) Determine the number of coefficients of a discrete-time finite impulse response (FIR) averaging
filter that would zero out 60 Hz and its harmonics. Use a sampling rate, f;, of 480 Hz. 10 points.

A discrete-time averaging filter is a lowpass filter, and we can use the pattern of zeros in the
stopband to remove 60 Hz and most of its harmonics. With L coefficients, the filter would

zero out discrete-time frequencies at @, = Zn'% for k=1,2, ..., L-1. Through sampling,
o = 211'% = Zn% which means f) = %k fork=1,2,...,L-1. Using L = 8 gives zeros at the

first seven harmonics: 60, 120, 180, 240, 300, 360, and 420 Hz. Due to sampling, the actual
frequencies are 60, 120, 180, 240, -180, -120, and -60 Hz. Also, 240 Hz is the same as -240 Hz.
Multiples of 480 Hz pass through the filter. The zeros of the echo filter in mini-project #2 have
a similar structure.

_______________________________________________________________________________________________
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